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AItItract-The laws of thermodynamics are employed to clarify the concepts of nonisotherma1
multi-dimensional creep damage and rupture. By poatulatinl a Chbba free energy functional in
terms of time intqrals of functions of stress, temperature and duDage, we deduce via the Second
Law of Thermodynamics constitutive laws for strain, entropy and damaae which are general
enoup to encompass various existing theories. Then by choosinl a more specific: form for the
Gibbs free energy we obtain the aoveming constitutive laws of the strain-dependent theory of
damage. The formulation of the boundary value problem for stress, displacement, temperature and
damage is also discussed, for both the coupled and quasi-static uncoupled cases.

NOTATION
initial cros.Ncctional area
effective undamaged area, eqn (I)
material damale constant, eqn (5)
multi-dimcnsional creep constants, eqn (12)
damage, eqn (4)
initial damage
critical value of damage at rupture
damage increment, eqn (8)
alternating tensor
Young's modulus
scalar functions of (1_ f and n, eqn (23)
body force per unit volume
tensor functions of (1_, f and n, eqn (23)
Gibbs free energy functional
first invariant of stress
second invariant of stress deviator
conductivity tensor, eqn (28)
creep constants, eqn (6)
normal coordinate to 1:, eqn (40)

q/ heat eftIux vector
Q heat input, eqn (18)
r distributed heat source
S entropy

siJ. stress deviator tensor
:Ii surface area
I time

'ri time to initial rupture
T temperature
1i reference temperature
T temperature increment, eqn (10)

Tin) traction vector
U specific internal potential energy
Uj displacement field
U internal kinetic and potential energy, eqn (19)

U() unit step function
VI velocity field
V volume

W work input, eqn (17)
rectangular Cartesian coordinates
material damage powers, eqn (5)
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aT coefficient of thermal expansion
P. v material damage constants of Kachanov. eqn (3)

~ij Kronecker delta
(ij strain tensor
I," Cfl,.'cll stmin tensor
if I creep strain rate corresponding to maximum principal stress tT., eqn (IS)
A rate of energy dissipation, eqn (29)
II damage dissipation energy material constant, eqn (3S)
l'r clastic Poisson's rcltio
p density

Po initial density
(I" slress tensor

tTl' tT2• tTl principal stresses, ordered from maximum to minimum
I moving boundary, Fig. I
T domain of volume
'" continuity, eqn (I).
(J) Kaehanov damage, eqn (2)

() indicates %t, assuming infinitesimal theory
{tT....f. D}, indicates products of powers of time integrals of functions of tT_, f and D

I. INTRODUCTION

The importance of creep damage and rupture in structural components at elevated
temperatures cannot be overemphasized, since clearly one of the most important require­
ments of a safe design is that a component not rupture during its useful lifetime. Creep
damage and rupture are difficult concepts to define, since complex continuum mechanical
and physical metallurgical principles are involved. On the one hand there are approaches
based primarily on macroscopic continuum mechanical postulates; among these is the
ductile rupture theory due to Hoff[I], the distributed damage and brittle rupture theory
due to Kachanov[2], and various subsequent improvements such as the theory due to
Rabotnov[3] which attributes tertiary creep to damage. On the other hand there are
approaches based primarily on microscopic physical metallurgical observations associated
with damage, such as variations of sound speed and electrical resistivity, neutron and
X-ray diffraction studies, and actual void counting with the aid of optical and electron
microscopes. Recently, Piatti et al. [4] have developed very sensitive differential density
measurement techniques as an index of damage due to void nucleation and growth. Using
data obtained for steel with such density measurement techniques, Belloni et al. [5, 6]
combined the continuum mechanical and physical metallurgical approaches to develop a
strain-dependent theory of damage which is essentially a modification of Kachanov's
theory. This initial strain-dependent model has been extended to more general loads and
materials by Belloni, Bernasconi, Cozzarelli, Lee and Piatti[7-9].

It is our major goal here to employ the laws of thermodynamics to help clarify the
concepts of non-isothermal creep damage and rupture in three dimensions, and to gain
useful conditions on the constitutive laws of damage. We use the energy functional
approach (see [10, II)) in a manner similar to that employed by Chang and Cozzarelli[12]
for nonlinear thermoviscoelastic materials, and by Cozzarelli and Huang[l3] for materials
undergoing thermally and irradiation induced creep. We will not employ the internal
variable approach (see [14)) which was used by Chaboche[lS] and Lemaitre and
Chaboche[16] to study damage, but it is well recognized that the two approaches are fully
consistent. We also address the question of proper formulation of the boundary value
problem for stress, displacement, temperature and damage, and make some brief obser­
vations concerning uniqueness using the results given in [17). Although most of our
attention is directed toward the strain-dependent theory ofdamage developed in [~9], our
results are also applicable to other theories of damage (e.g. [2, 3]).

In Section 2 we discuss the strain-dependent theory of creep damage for in­
homogeneous materials subjected to time·dependent tensile or compressive stress histories,
with special attention paid to the formulation for multiaxial stress states with certain
material parameters dependent on temperature which in turn may vary in space and time.
Then in Section 3 we postulate a Gibbs free energy functional containing products of
powers of time integrals of functions of stress, temperature increment and damage
increment, and we are able to deduce via the first and second laws of thermodynamics three
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dimensional constitutive laws for the strain aridtiltropy in explicit form and for the
damage increment in implicit form. By choosing more specific fonns for the Gibbs free
energy and by introducing the concept of a critical damage at which rupture occurs, one
may obtain various damage theories from these constitutive laws, and we illustrate this
in detail for the strain-dependent creep damage theory discussed in Section 2.

Section 4 begins with a presentation of the general coupled boundary value problem,
which consists of a set of 18 simultaneous equations in stress, strain, displacement,
temperature, entropy and damage. As in Kachanov[2J, we first consider a period of"latent
f"ilurc" which extends up to the time at which critical damage is reached and rupture
begins, and then a period of "propagation of failure" which continues up to time at which
the material is no longer able to support the applied loads. During the first time period
we have a boundary value problem with a fixed boundary, while during the second time
period we have a moving boundary and a boundary value problem with features similar
to the Stefan problem in heat conduction [18J. Section 4 then concludes with a presentation
of the uncoupled quasi-static stress boundary value problem, including the governing stress
compatibility field equations and some brief comments on uniqueness of solution.

2. STRAIN-DEPENDENT THEORY OF CREEP DAMAGE

In the study of creep rupture the concept of damage has been introduced in various
ways. The most widely used approach is due to Kachanov[2J, who used simple ideas from
the one-dimensional tensile tcst to define a quantity called the continuity as

"'(t) = A,(t)
Ao

(I)

where Ao is the initial cross sectional area of the test specimen, and Ar(t) is the effective
undamaged area capable of resisting the load at any instant. The "damage" wet) was then
introduced in tenns of the continuity as

() I "'() Ao-Ar(t)wtc -.,.t=........:._~~

Ao
(2)

which was defined as running from 0 to 1, as the material underwent transition from the
initial undamaged state (A, =Ao) to the final state of critical damage and rupture (A r =0).
Kachanov also postulated that the rate of damage increase in accordance with the
one-dimensional power law

wet) = fJ [ O'(t) J'
1- wet)

(3)

where t1 is the tensile stress and fJ and v are material damage constants. Note that the
damage as given by eqn (3) is not directly strain-dependent.

Belloni et al. [5,6] attempted to estimate the quantities appearing in eqn (3) by
measuring density variation[4] and defining the damage as the dimensionless quantity

D(t) =_ .1p =Po - pet)
Po Po

(4)

where Po is the initial density of the undamaged material and pet) is the density at time
t. In analogy with the Kachanov damage w, the damage D(I) was defined as running from
o to a critical value at rupture, D" which is a material constant. These experiments
indicated that the creep strain £t has a very significant effect on the accumulation of
damage, and good agreement was obtained with data for the case of one dimensional
constant tensile stress 0'0 using the strain-dependent power law

(5)
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where B, ex, ')I, lJ are positive material damage constants at a particular constant
temperature. If we neglect transient creep, the creep strain is given by the Norton power
law

(6)

where K, n are positive material constants at constant temperature.
Cozzarelli and Bemasconi[7] extended eqn (5) to the case of one-dimensional variable

tensile stress. Lee and Cozzarelli [9] extended it further to compressive as well as tensile
one dimensional stress, and also to the case of inhomogeneous materials. Equations (5)
and (6) then extend to

D(x,/) =B(X){K(x) f: a(x,I')"U[a(x, I')]d/}{J:a(x,I')7/I U[a(x,I')] d/J (7a)

£r(x, I) =K(x) L' a(x, I')"d/' (7b)

where a(x, I) may now vary with position and time. In eqn (7a) the first term in brackets
is the creep strain, U(a) is the unit step function which was introduced to reproduce the
experimentally observed result that in many materials little damage is produced under
compression, B(x) and K(x) (but not the powers ex, ')I, lJ, n) may vary with position due
to material inhomogeneity, and

IJ(x, I) =D(x, I) - Do(x) (8)

where Do(x) is an initial inhomogeneous state of damage. The lower limits in eqns (7) have
been set at 0, since a(/) is assumed to vanish for 1 < O. As previously noted, for simplicity
transient creep was not included in eqns (S}-(7), and thus the stress in eqns (7) is
constrained to vary slowly with time. For more rapid loading conditions such as in the
case of cyclic variation of stress, it would not only be necessary to employ a more general
creep law (e.g. see [12, 19]) but it might also be necessary to include fatigue damage in
addition to creep damage (see [IS]).

It is interesting to note that if eqn (7a) is restricted to homogeneous materials subjected
to tensile creep only, then this strain dependent damage law can be expressed in a form
similar to the integral of Kachanov's law (3) for the special case where ')I = nlJ in (7a) and
v = n in (3). Accordingly, we obtain

1- [1- 00(/)]"+1 = pen + I) f: q"(/')d/'

D(/)1/(-+ I) = (BKtl)l/(tl+d) f: a"(/') d/'

(9a)

(9b)

which establishes an analogy between the two formulations under these special conditions,
if we require in addition that BK- = [pen + 1)]-+1 and D = [1 - (I - (0)"+1]-+1.

In this paper we take one-dimensional eqns (7) one step further and permit parameters
Band K to also vary with the space and time dependent temperature increment

T(x, I) =T(x, I) - To(x) (10)

where To(x) is a reference temperature. By following the same procedure outlined in [7, 9]
in obtaining eqns (7), we now get

D(x, I) = {J: K[x, T(x, t')]a(x, 1')"U[a(x, I')] d/J
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X {J: B[x, T(x, 1')]II,sO'(X, 1')l/,sU[O'(x, I')] dtJ (l1a)

Ec(X, I) =J: K[x, T(x, 1')]IO'(X,I')ft d/'. (lib)

The present study is not limited to the one-dimensional case, and thus it is necessary
to present multiaxial extensions of eqns (11). For the creep law we shall employ the
isotropic incompressible steady creep law (see [20] for a discussion of compressibility and
transient creep) of the Mises-type

Eci/(XI , I) = f: C[Xt, T(x
"

t')V:t'Sq dt'

where sii =0'1j - jO'lA;6!i is the stress deviator and J2 =VIf'ii is the second invariant ofthe stress
deviator, and where

n -Im=--
2

(13)

In selecting a multiaxial damage law we adopt the simplest approach, and assume that
damage in three dimensions is a scalar computed from the maximum principal stress (see
[21]) and, for strain-dependent damage, from the corresponding creep strain. Accordingly,
eqn (1Ia) extends to

D(xj , I) = {f (t\(xj , I')U(O'I) d/,r{f B[xj , T(x;, t')]"60',(Xj ,t')1/6U(0'1) dt,r (14)
where a, is the maximum of the principal stresses O'tt 0'2' 0'3 and £e1is the corresponding
creep strain rate obtained from eqn (12) as

(IS)

For a discussion of more general multi-axial damage laws, see [9, IS] and the work of
Martin and Leckie[22], and Hayhurst and Leckie[23]. In the next section we shall prove
that eqn (14) is consistent with the laws of thermodynamics.

3. THERMODYNAMIC BASIS OF DAMAGE

(a) Firsl tmd second laws of Ihermodynamics
Consider a continuum subjected to work input Wand heat input Q on its surface and

throughout its volume. This energy input is converted into change of the internal kinetic
and potential energy U, associated not only with the velocity VI' strain Ei) and temperature
T fields, but also with the damage field D due to the creation of new internal surface area
at voids. The usual global form of the first law of thermodynamics is thus expressed as

(16)

where a dot indicates time rate of change.
For infinitesimal theory, W, Qand 0 are written in the usual manner (see [24]) as

volume integrals over the domain T. Thus

Q= - f. oql dV + f. por dV.oxi •

(17)

(18)
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(19)

where Fj is the body force per unit volume, oqdoxj is the divergence of the rate of heat
efflux vector qj, Po is the mass density of the undamaged material and thus assumed
constant, r is the strength of a distributed rate of heat source, and u is the specific internal
potential energy.

Combining eqns (16}-(19) and introducing the Gibbs free energy G =(a;/.;/po)­
u + 7:\' where s is the entropy, the local form of the first law of thermodynamics is obtained
as

oaij oq; (OG aT as)
-(.j'- --+PoT =Po --+s-+ T-

u at ax; at at at
(20)

with the use of the equations of motion. The second law of thermodynamics is expressed
as the usual i.nequality [24]

as oqj q;oT
PoT- -PoT +----~o.

at OX; Tax;
(21)

Finally, combining (20) and (21) and introducing the definition of the temperature
increment relative to an initial inhomogeneous state (see eqn 10), we obtain for
infinitesimal theory

oaij oG of qj of 0
-(.··-+Po--PoS----~ .

'lot at at To ax;
(22)

In this inequality we take aij' f and the damage increment 15 (see eqn 8) as the basic
thermodynamic variables, and for convenience jj is taken to be dimensionless.

(b) Constitutive equations of damage
We postulate for the Gibbs free energy functional the expression

(23)

where h and g. are scalar and tensor functions respectively of a.... , f and 15, and where
the notation {a"." f,15h is used to represent products of powers of time integrals of
functions of a"." f and 15. By postulating G in this general form, one may obtain via
thermodynamics not only the law of strain-dependent damage (eqn 14) but also other
damage laws such as due to Kachanov[2] and Rabotnov[3].

Differentiating eqn (23) we obtain

oG =L [(aJ,. riij +aJ,.l' +¥.:.n) + (agkri·· +Ogkl' +~n)
at • aaij aT (jD (jaij IJ aT aD

x {a....,f,D}. + {a...., f, D}.g.] (24)

where (") represents partial differentiation with respect to time. Substituting (24) into
inequality (22) and rearranging terms we obtain
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In inequality (25) we first set the coefficients of the basic thermodynamic variables
tT;J' T, Dequal to zero, and thereby obtain the constitutive relations

~(ah { ,;II -} Ogk)s= 1" ar+ (1".. I.D kai"

(26a)

(26b)

(26c)

Note that eqn (26c) will in general yield an implicit relation in n, the damage increment
variable. It then follows that for inequality (25) to be satisfied it is necessary that

(27)

If we introduce the Fourier heat conduction law

(28)

where kij is the positive definite conductivity tensor. and define the rate of energy
dissipation as

(29)

inequality (27) becomes

(30)

Since inequality (30) must hold for all values of (af/ox/). including the particular case
(at/axl) =0, it is necessary that

A ~O. (31)

3(c). Special case-strain dependent damage law
For the sake of brevity we shall not display the arguments Xi in this section. In

expression (23) for the Gibbs free energy functional we shall choose

g,«(1_, f, D) = (1.., {(1.... f.15}, _.! f' C(f(t'»)J1(t'rS...(t') dt' (32&)
PoJo

where all quantities were defined in eqns (12)-(13). and

(32b)

where Vr , E are the elastic Poisson's ratio and Young's modulus respectively, I. = (1" is the
first invariant of stress, and aT is the coefficient of thermal expansion. Then. since we are
not concerned with the form of the entropy law in this paper, we shall simply set

g1«(1"., f, 15) =o. (32c)
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where g(t) is some unspecified function of temperature increment. Lastly, we select

-i'\ - Jl -2 -i'\ - Jl-
!l(u""" I,D)= --2D, g3(U"""I,D)=-D

Po Po

where Jl is a material constant whose physical meaning we shall soon discuss, and all other
quantities were defined in eqns (14) and (15).

It then follows from eqns (26c) and (32) that the damage law is given as

which is the same strain-dependent damage law presented in Section 2 (eqn 14).
Furthermore, it follows from eqns (26a) and (32) that the strain is given by

which is the isotropic stress power law for the incompressible steady creep case given in
Section 2 (eqn 12), plus the usual isotropic linear thermoelasti(i terms. In a similar
straightforward manner one could obtain various other damage apd creep laws.

Finally, the rate of energy dissipation is obtained from eqns (29) and (32) as

A = 2CJi+ 1+ JillD (35)

where the first term is due to the creep strain while the second is due to the damage. Thus
we see that Jl is a material constant associated with energy dissipation due to damage and
with units of energy per unit volume. Since all material constants are assumed to be
positive, and J2 is non-negative by definition, and also D~ 0 and D~ 0 because both
integrands in eqn (33) are non-negative, it follows that each term in eqn (35) is
non-negative. Accordingly, A ~ 0 and thus the present formulation is consistent with the
second law of thermodynamics.

In the next section we discuss the fonnulation of the boundary value problem.

4. FORMULATION OF THE BOUNDARY VALUE PROBLEM

(a) Complete set of equations in general coupled problem
With the use ofeqns (23), (26) and (28), coupled energy equation (20) may be rewritten

in the compact form

(36)

where we recognize the third term as the energy dissipation A (eqn 29). For convenience
we reproduce constitutive equations (26) below:

'" (Olk { -i'\ -} Ogle)l.ij=PoLJ :;-+ u"." I,D ,,~
" uUij u(1/J

'" (Olk { -i'\ -} Ogle)s= 7' a:r+ (1"." I,D "aT

'" (elk { -i'\ -} ogle)0=7' aD + U""', I, D "aD .

(37a)

(37b)

(37c)
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Finally, we add the usual equations of motion and strain displacement relations of
infinitesimal theory

Oqij F .,-+ ',= IJoU
O I Ixj

(38a)

(38b)

where "/ is the displacement field and F, is the body force.
Equations (36)-(38) are a set of 18 simultaneous equations in the variables q/j' £11' "I'

t, Dand s, which as described in Kachanov[2] are subjected to two sets of boundary and
initial conditions for two different intervals of time. Following [2], we designate the first
interval as the period of "latent failure" defined by 0 S t S tri , where the load is applied
at t =0 and tri is the time at which the total damage D=iJ + Do (see eqn 8) first reaches
(at some point) the critical value at rupture, D,. During this period of latent failure one
typically prescribes tractions on the boundary, i.e.

(39)

where X, are coordinates on the fixed boundary 5 and Tt'If) is a given traction vector.
At time tri a failure front begins to propagate through the material, and again following

[2] we designate this second time interval t;;:: tri as the period of "propagation offailure".
During this time period we have a moving boundary value problem somewhat similar to
the Stefan problem in heat conduction. This is shown schematically in Fig. I, where E(I)
is a moving boundary on which D = D" and domain 't'.(t) is assumed to have no
load-carrying capacity, i.e. it has "ablated" away. Equations (36}-(38) must now be solved
simultaneously for domain 't'2(t), where tractions are prescribed on 52(t), and, using the
fact that the damage is a prescribed constant on E(I), one may obtain (see [2]) the
boundary condition

dN aD/aD-=-- - on E(I)
dt at aN

where N is the normal coordinate to 1:'(t).

(40)

(b) Uncoupled quasi-static problem with strain-dependent damage
For simplicity, let us neglect therrnomechanical coupling, body forces and inertia, and

furthermore employ the strain-dependent damage law and creep law given in Section 3(c).
Accordingly, the temperature is assumed prescribed and eqns (36) and (37b) are no longer

Fig. 1. Period of propagation of failure.



496 K. BUJlKf and F. A. CoZZAlW.U

required, and eqns (38a), (38b), (37a) and (37c) become respectively

oUij = 0 (4Ia)
oXj

lij = -2
1(~Ui + ~Uj) (41 b)

uXj uX;

lij = I~ \I, (Uij - 1~ \I, J1c5v) + cxrTc5v + f: C(T(/'»J2(t')"'SI/(/') dt' (4Ic)

15(/) = [fa' £..(1') U(U.(/'» d/J[fa' B(f(/'»I/6U1(/')7I6U(u.(/'» dl'l (4Id)

Equations (41a-<:) are 15 equations in u/I' £" and Uj which may be solved first with the given
boundary conditions, and then the results may be substituted into eqn (41d) to compute
the damage in order to keep track of the propagation of failure as discussed in the previous
section. Thus, in the uncoupled problem not only the temperature but also the damage
is uncoupled from the simultaneous field equations.

Assuming tractions are prescribed, we may, of course, obtain a stress formulation from
eqns (41a-<:) with the use of the compatibility equations

(42)

where eijl< is the alternating tensor. Proceeding in the usual manner (e.g. see [25», we obtain
the stress compatibility equations

where l(ij is the creep strain

£<1) = f: C(f(/'»Jz(/')"'SII(/') dl'

(43)

(44)

and where we have used the identity £c*k =O. The solution procedure requires solving
compatibility equations (43), supplemented by equilibrium equations (4Ia) and the given
boundary tractions, for the stress ui/; the creep strain and the damage then follow from
eqns (44) and (4Id) respectively.

As discussed in the previous section, there will be a period of latent failure, with a fixed
boundary, followed by a period of propagation of failure, with a moving boundary. For
the period of latent failure we have the same type of problem for which uniqueness of
solution was proven in [17). The uniqueness problem for the period of propagation of
failure is much more difficult, and we shall not attempt to consider this problem here.
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